[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
::
(CC-BY 4.0)

AWT IMAGE

Journal of Research in Dental Sciences is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 20, Issue 2 (jrds 2023) ::
J Res Dent Sci 2023, 20(2): 15-24 Back to browse issues page
Comparison of the bond strength of porcelain to titanium substructure made by EBM or Milling method
Abdolkarim Rostamian * , Shahbaz Nasermostofi , Shirin Lawaf
dental faculty of islamic azad univesity of medical sciences , abdolkarim.rostamian@gmail.com
Abstract:   (619 Views)
Background and Aim : One of the main reasons for the failure of metal-ceramic restorations is insufficient bond strength between porcelain and metal, which depends on various factors, including the manufacturing method. The purpose of this study was to evaluate the effect of manufacturing method on bond strength of porcelain to titanium substructure made by EBM or Milling method.
Materials and methods: In this in-vitro study two groups comprised of twenty metal bars each were prepared with EBM or Milling method. first a resin bar was molded into standard ISO:9693 dimensions of 25 mm × 3 mm × 0.5 mm. then it scanned and Ten bars from each group were manufactured using milling device from titanium disks or from an EBM device from Ti-6Al-4Va titanium alloy. bars were sandblasted with 110 μm aluminum oxide particles and were impregnated with bonding agent before the application of 1/1 mm of porcelain onto 8 mm × 3 mm rectangular area in the center of each bar porcelain. Afterwards, bond strengths of the samples were assessed using 3-point bending test with a Universal Testing Machine. Statistical analysis was performed using T-test and a significant level of 0.05 was considered
Results: The mean bond strength of EBM group (34.36±3.67MPa) was lower than Milling group (46.52±4.34 MPa) and there was statistically significant difference between groups (p-value<0.001).
Conclusion: Bond strength of EBM-manufactured samples were lower than milled group while both groups exceed the minimum requirement of bond strength for metal-ceramic restoration according to ISO9693.
 
Keywords: Titanium, Bond strength, Dental porcelain, CAD/CAM
Full-Text [PDF 1084 kb]   (476 Downloads)    
Type of Study: original article | Subject: Prothesis
References
1. McLean JW. The science and art of dental ceramics. The nature of dental ceramics and their clinical use. 1979:79-82.
2. Fernandes Neto AJ, Panzeri H, Neves FD, Prado RAd, Mendonça G. Bond strength of three dental porcelains to Ni-Cr and Co-Cr-Ti alloys. Braz Dent J. 2006;17(1):24-8. [DOI:10.1590/S0103-64402006000100006] [PMID]
3. Wataha JC. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 2000;83(2):223-34. [DOI:10.1016/S0022-3913(00)80016-5] [PMID]
4. Haag P, Nilner K. Questions and answers on titanium-ceramic dental restorative systems: a literature study. Quintessence Int. 2007;38(1).
5. Haag P, Nilner K. Bonding between titanium and dental porcelain: A systematic review. Acta Odontol Scand. 2010;68(3):154-64. [DOI:10.3109/00016350903575260] [PMID]
6. Adell R, Eriksson B, Lekholm U, Brånemark P-I, Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990;5(4).
7. Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71-84. [DOI:10.1177/154411130201300108] [PMID]
8. Barão VA, Mathew MT, Assunção WG, Yuan JCC, Wimmer MA, Sukotjo C. Stability of cp‐Ti and Ti‐6 Al‐4 V alloy for dental implants as a function of saliva pH-an electrochemical study. Clin Oral Implants Res. 2012;23(9):1055-62. [DOI:10.1111/j.1600-0501.2011.02265.x] [PMID]
9. Brauner H. Titanium as dental material. A summary of the current position. Quintessenz Zahntechn. 1992;18:221-38.
10. Haag P, Khan F, Andersson M, Vult von Steyern P. Influence of firing conditions and production methods on fracture strength of titanium-based metal ceramic crowns.J Adhes Sci Technol. 2018;32(3):225-38. [DOI:10.1080/01694243.2017.1352119]
11. Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10-7. [DOI:10.1016/S0022-3913(03)00263-4] [PMID]
12. Cai Z, Bunce N, Nunn ME, Okabe T. Porcelain adherence to dental cast CP titanium: effects of surface modifications. Biomaterials. 2001;22(9):979-86. [DOI:10.1016/S0142-9612(00)00263-5] [PMID]
13. Papia E, Arnoldsson P, Baudinova A, Jimbo R, Von Steyern PV. Cast, milled and EBM-manufactured titanium, differences in porcelain shear bond strength. Dent Mater J. 2018;37(2):214-21. [DOI:10.4012/dmj.2016-404] [PMID]
14. Antanasova M, Jevnikar P. Bonding of dental ceramics to titanium: processing and conditioning aspects. Curr Oral Health Rep. 2016;3(3):234-43. [DOI:10.1007/s40496-016-0107-x]
15. Antanasova M, Kocjan A, Hočevar M, Jevnikar P. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J ProsthetDent. 2019. [DOI:10.1016/j.prosdent.2019.02.011] [PMID]
16. Iseri U, Özkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011:1105140129-. [DOI:10.4012/dmj.2010-101] [PMID]
17. Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20-32. [DOI:10.1016/j.jmbbm.2008.05.004] [PMID]
18. Kimura H, Horng C-J, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J. 1990;9(1):91-9,124. [DOI:10.4012/dmj.9.91] [PMID]
19. Adachi M, Mackert Jr J, Parry E, Fairhurst C. Oxide adherence and porcelain bonding to titanium and Ti-6A1-4V alloy. J Dent Res. 1990;69(6):1230-5. [DOI:10.1177/00220345900690060101] [PMID]
20. Antanasova M, Kocjan A, Kovač J, Žužek B, Jevnikar P. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J Prosthte Res. 2018;62(2):184-94. [DOI:10.1016/j.jpor.2017.08.007] [PMID]
21. Karlsson J, Norell M, Ackelid U, Engqvist H, Lausmaa J. Surface oxidation behavior of Ti-6Al-4V manufactured by Electron Beam Melting (EBM®). J Manuf Processes. 2015;17:120-6. [DOI:10.1016/j.jmapro.2014.08.005]
22. Hobo S, Shillingburg HT. Porcelain fused to metal: tooth preparation and coping design. J Prosthte Dent. 1973;30(1):28-36. [DOI:10.1016/0022-3913(73)90075-9] [PMID]
23. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting. J Adv Prosthodont. 2017;9(1):52-6. [DOI:10.4047/jap.2017.9.1.52] [PMID] [PMCID]
24. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina--advanced technologies for the manufacturing of single crowns. Eur. J. of Prosthodon Restor Dent. 1999;7(4):113-9.
25. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D, et al. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag. 2014;13(2):446-52.
26. Li KC, Tran L, Prior DJ, Waddell JN, Swain MV. Porcelain bonding to novel Co-Cr alloys: influence of interfacial reactions on phase stability, plasticity and adhesion. Dent Mater. 2016;32(12):1504-12. [DOI:10.1016/j.dental.2016.09.008] [PMID]
27. Moffa J. Alternative dental casting alloys. Dental clinics of North America. 1983;27(4):733-46. [DOI:10.1016/S0011-8532(22)02287-X] [PMID]
28. Gupta A, Musani S, Dugal R, Jain N, Railkar B, Mootha A. A comparison of fracture resistance of endodontically treated teeth restored with bonded partial restorations and full-coverage porcelain-fused-to-metal crowns. Int J Periodontics Restorative Dent. 2014;34(3). [DOI:10.11607/prd.1706] [PMID]
29. Vafaee F, Firouz F, Alirezaii P, Gholamrezaii K, Khazaei S. Bond strength of porcelain to cobalt chromium dental alloy fabricated by selective laser melting and casting methods. Biosc Biotech Res Comm. 2017;10:424-30. [DOI:10.21786/bbrc/10.3/15]
30. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials: Elsevier Health Sciences; 2012.
31. Sukumaran V, Bharadwaj N. Ceramics in dental applications. Trends Biomater Artif Organs. 2006;20(1):5.
32. Togaya T. Studies on the dental casting of titanium alloy. Part IV Casting of pure titanium alloys with magnesia investment. J Japan Res Soc Dent Mat Appl. 1981;38(3):460-7.
33. Değirmenci BÜ, Ersoy NM. The effects of current production techniques on the surface roughness, oxide layer thickness and porcelain bond strength of cobalt-chromium and titanium substructures. International Dental Research. 2021;11(3):129-39. [DOI:10.5577/intdentres.2021.vol11.no3.1]
34. Reyes M, Oshida Y, Andres C, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: Effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117-36.
35. Maressa P, Anodio L, Bernasconi A, Demir AG, Previtali B. Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy. J Adhes J. 2015;91(7):518-37. [DOI:10.1080/00218464.2014.933809]
36. Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur. J. Prosthodont Restor Dent. 1999;7(1):15-21.
37. Henriques B, Faria S, Soares D, Silva FS. Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments. Mater. Sci. Eng. C. 2013;33(1):557-63. [DOI:10.1016/j.msec.2012.10.001] [PMID]
38. Carpenter MA, Goodkind RJ. Effect of varying surface texture on bond strength of one semiprecious and one nonprecious ceramo-alloy. J Prosthet Dent. 1979;42(1):86-95. [DOI:10.1016/0022-3913(79)90334-2] [PMID]
39. Toptan F, Alves AC, Henriques B, Souza JC, Coelho R, Silva FS, et al. Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength. J Mech Behav Biomed Mater. 2013;20:327-37. [DOI:10.1016/j.jmbbm.2013.02.003] [PMID]
40. Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J Mater Process Technol. 2013;213(12):2109-18. [DOI:10.1016/j.jmatprotec.2013.06.010]
41. Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N. Additive manufacturing of titanium alloys for orthopedic applications: a materials science viewpoint. Adv Eng Mater. 2018;20(9):1800172. [DOI:10.1002/adem.201800172]
42. Lee D-H, Lee B-J, Kim S-H, Lee K-B. Shear bond strength of porcelain to a new millable alloy and a conventional castable alloy. J. Prosthet Dent. 2015;113(4):329-35. [DOI:10.1016/j.prosdent.2014.09.016] [PMID]
43. Tróia Jr MG, Henriques GE, Nóbilo MA, Mesquita MF. The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy. Dent Mater. 2003;19(8):790-6. [DOI:10.1016/S0109-5641(03)00027-7] [PMID]
44. Lee B-A, Kim O-S, Vang M-S, Park Y-J. Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain. The Journal of Prosthetic Dentistry. 2013;109(2):95-105. [DOI:10.1016/S0022-3913(13)60023-2] [PMID]
45. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119(3):481-7. [DOI:10.1016/j.prosdent.2017.04.007] [PMID]
46. McLean JW. The science and art of dental ceramics. The nature of dental ceramics and their clinical use. 1979:79-82.
47. Fernandes Neto AJ, Panzeri H, Neves FD, Prado RAd, Mendonça G. Bond strength of three dental porcelains to Ni-Cr and Co-Cr-Ti alloys. Braz Dent J. 2006;17(1):24-8. [DOI:10.1590/S0103-64402006000100006] [PMID]
48. Wataha JC. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 2000;83(2):223-34. [DOI:10.1016/S0022-3913(00)80016-5] [PMID]
49. Haag P, Nilner K. Questions and answers on titanium-ceramic dental restorative systems: a literature study. Quintessence Int. 2007;38(1).
50. Haag P, Nilner K. Bonding between titanium and dental porcelain: A systematic review. Acta Odontol Scand. 2010;68(3):154-64. [DOI:10.3109/00016350903575260] [PMID]
51. Adell R, Eriksson B, Lekholm U, Brånemark P-I, Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990;5(4).
52. Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71-84. [DOI:10.1177/154411130201300108] [PMID]
53. Barão VA, Mathew MT, Assunção WG, Yuan JCC, Wimmer MA, Sukotjo C. Stability of cp‐Ti and Ti‐6 Al‐4 V alloy for dental implants as a function of saliva pH-an electrochemical study. Clin Oral Implants Res. 2012;23(9):1055-62. [DOI:10.1111/j.1600-0501.2011.02265.x] [PMID]
54. Brauner H. Titanium as dental material. A summary of the current position. Quintessenz Zahntechn. 1992;18:221-38.
55. Haag P, Khan F, Andersson M, Vult von Steyern P. Influence of firing conditions and production methods on fracture strength of titanium-based metal ceramic crowns.J Adhes Sci Technol. 2018;32(3):225-38. [DOI:10.1080/01694243.2017.1352119]
56. Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10-7. [DOI:10.1016/S0022-3913(03)00263-4] [PMID]
57. Cai Z, Bunce N, Nunn ME, Okabe T. Porcelain adherence to dental cast CP titanium: effects of surface modifications. Biomaterials. 2001;22(9):979-86. [DOI:10.1016/S0142-9612(00)00263-5] [PMID]
58. Papia E, Arnoldsson P, Baudinova A, Jimbo R, Von Steyern PV. Cast, milled and EBM-manufactured titanium, differences in porcelain shear bond strength. Dent Mater J. 2018;37(2):214-21. [DOI:10.4012/dmj.2016-404] [PMID]
59. Antanasova M, Jevnikar P. Bonding of dental ceramics to titanium: processing and conditioning aspects. Curr Oral Health Rep. 2016;3(3):234-43. [DOI:10.1007/s40496-016-0107-x]
60. Antanasova M, Kocjan A, Hočevar M, Jevnikar P. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J ProsthetDent. 2019. [DOI:10.1016/j.prosdent.2019.02.011] [PMID]
61. Iseri U, Özkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011:1105140129-. [DOI:10.4012/dmj.2010-101] [PMID]
62. Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20-32. [DOI:10.1016/j.jmbbm.2008.05.004] [PMID]
63. Kimura H, Horng C-J, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J. 1990;9(1):91-9,124. [DOI:10.4012/dmj.9.91] [PMID]
64. Adachi M, Mackert Jr J, Parry E, Fairhurst C. Oxide adherence and porcelain bonding to titanium and Ti-6A1-4V alloy. J Dent Res. 1990;69(6):1230-5. [DOI:10.1177/00220345900690060101] [PMID]
65. Antanasova M, Kocjan A, Kovač J, Žužek B, Jevnikar P. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J Prosthte Res. 2018;62(2):184-94. [DOI:10.1016/j.jpor.2017.08.007] [PMID]
66. Karlsson J, Norell M, Ackelid U, Engqvist H, Lausmaa J. Surface oxidation behavior of Ti-6Al-4V manufactured by Electron Beam Melting (EBM®). J Manuf Processes. 2015;17:120-6. [DOI:10.1016/j.jmapro.2014.08.005]
67. Hobo S, Shillingburg HT. Porcelain fused to metal: tooth preparation and coping design. J Prosthte Dent. 1973;30(1):28-36. [DOI:10.1016/0022-3913(73)90075-9] [PMID]
68. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting. J Adv Prosthodont. 2017;9(1):52-6. [DOI:10.4047/jap.2017.9.1.52] [PMID] [PMCID]
69. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina--advanced technologies for the manufacturing of single crowns. Eur. J. of Prosthodon Restor Dent. 1999;7(4):113-9.
70. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D, et al. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag. 2014;13(2):446-52.
71. Li KC, Tran L, Prior DJ, Waddell JN, Swain MV. Porcelain bonding to novel Co-Cr alloys: influence of interfacial reactions on phase stability, plasticity and adhesion. Dent Mater. 2016;32(12):1504-12. [DOI:10.1016/j.dental.2016.09.008] [PMID]
72. Moffa J. Alternative dental casting alloys. Dental clinics of North America. 1983;27(4):733-46. [DOI:10.1016/S0011-8532(22)02287-X] [PMID]
73. Gupta A, Musani S, Dugal R, Jain N, Railkar B, Mootha A. A comparison of fracture resistance of endodontically treated teeth restored with bonded partial restorations and full-coverage porcelain-fused-to-metal crowns. Int J Periodontics Restorative Dent. 2014;34(3). [DOI:10.11607/prd.1706] [PMID]
74. Vafaee F, Firouz F, Alirezaii P, Gholamrezaii K, Khazaei S. Bond strength of porcelain to cobalt chromium dental alloy fabricated by selective laser melting and casting methods. Biosc Biotech Res Comm. 2017;10:424-30. [DOI:10.21786/bbrc/10.3/15]
75. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials: Elsevier Health Sciences; 2012.
76. Sukumaran V, Bharadwaj N. Ceramics in dental applications. Trends Biomater Artif Organs. 2006;20(1):5.
77. Togaya T. Studies on the dental casting of titanium alloy. Part IV Casting of pure titanium alloys with magnesia investment. J Japan Res Soc Dent Mat Appl. 1981;38(3):460-7.
78. Değirmenci BÜ, Ersoy NM. The effects of current production techniques on the surface roughness, oxide layer thickness and porcelain bond strength of cobalt-chromium and titanium substructures. International Dental Research. 2021;11(3):129-39. [DOI:10.5577/intdentres.2021.vol11.no3.1]
79. Reyes M, Oshida Y, Andres C, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: Effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117-36.
80. Maressa P, Anodio L, Bernasconi A, Demir AG, Previtali B. Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy. J Adhes J. 2015;91(7):518-37. [DOI:10.1080/00218464.2014.933809]
81. Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur. J. Prosthodont Restor Dent. 1999;7(1):15-21.
82. Henriques B, Faria S, Soares D, Silva FS. Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments. Mater. Sci. Eng. C. 2013;33(1):557-63. [DOI:10.1016/j.msec.2012.10.001] [PMID]
83. Carpenter MA, Goodkind RJ. Effect of varying surface texture on bond strength of one semiprecious and one nonprecious ceramo-alloy. J Prosthet Dent. 1979;42(1):86-95. [DOI:10.1016/0022-3913(79)90334-2] [PMID]
84. Toptan F, Alves AC, Henriques B, Souza JC, Coelho R, Silva FS, et al. Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength. J Mech Behav Biomed Mater. 2013;20:327-37. [DOI:10.1016/j.jmbbm.2013.02.003] [PMID]
85. Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J Mater Process Technol. 2013;213(12):2109-18. [DOI:10.1016/j.jmatprotec.2013.06.010]
86. Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N. Additive manufacturing of titanium alloys for orthopedic applications: a materials science viewpoint. Adv Eng Mater. 2018;20(9):1800172. [DOI:10.1002/adem.201800172]
87. Lee D-H, Lee B-J, Kim S-H, Lee K-B. Shear bond strength of porcelain to a new millable alloy and a conventional castable alloy. J. Prosthet Dent. 2015;113(4):329-35. [DOI:10.1016/j.prosdent.2014.09.016] [PMID]
88. Tróia Jr MG, Henriques GE, Nóbilo MA, Mesquita MF. The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy. Dent Mater. 2003;19(8):790-6. [DOI:10.1016/S0109-5641(03)00027-7] [PMID]
89. Lee B-A, Kim O-S, Vang M-S, Park Y-J. Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain. The Journal of Prosthetic Dentistry. 2013;109(2):95-105. [DOI:10.1016/S0022-3913(13)60023-2] [PMID]
90. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119(3):481-7. [DOI:10.1016/j.prosdent.2017.04.007] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rostamian A, nasermostofi S, Lawaf S. Comparison of the bond strength of porcelain to titanium substructure made by EBM or Milling method. J Res Dent Sci 2023; 20 (2) :15-24
URL: http://jrds.ir/article-1-1376-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 2 (jrds 2023) Back to browse issues page
مجله تحقیق در علوم دندانپزشکی Res Dent Sci
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4657