[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بانک‌ها و نمایه‌ها::
ثبت کد ارکید::
::
(CC-BY 4.0)

AWT IMAGE

Journal of Research in Dental Sciences is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"

..
مجله تحقیق در علوم دندانپزشکی دارای رتبه علمی-پژوهشی از وزارت بهداشت بوده و در پایگاه chemical abstract به عنوان نمایه سطح دو جهت ارتقای اعضای هیات علمی علوم پزشکی نمایه میگردد.
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
مجله تحقیق در علوم دندانپزشکی در آخرین گزارش پایگاه ISC دارای میانگین ضریب تاثیر0.223 در رشته دندانپزشکی می باشد.
..
:: دوره 20، شماره 2 - ( فصلنامه تحقيق در علوم دندانپزشكي تابستان 1402 ) ::
جلد 20 شماره 2 صفحات 24-15 برگشت به فهرست نسخه ها
مقایسه استحکام باند بین پرسلن و زیرساخت فلزی تیتانیومی ساخته شده به دو روش Milling و EBM
عبدالکریم رستمیان* ، شهباز ناصرمستوفی ، شیرین لواف
متخصص پروتز های دندانی ، abdolkarim.rostamian@gmail.com
چکیده:   (617 مشاهده)
سابقه و هدف: یکی از اصلی ترین علت شکست رستوریشن ها نبود استحکام باند کافی بین پرسلن و فلز می باشد که به عوامل مختلفی از جمله نحوه ی ساخت رستوریشن بستگی دارد. این مطالعه با هدف بررسی تاثیر روش ساخت فریم ورک فلزی بر استحکام باند پرسلن به آلیاژ تیتانیوم ساخته شده به دو روش EBM و Milling انجام شد. 
مواد و روش ها:  در این مطالعه تجربی- آزمایشگاهی  مجموعا 20 نمونه در 2 گروه 10تایی ساخته شد. یک مولد رزینی طبق استاندارد ISO-9693 ساخته شد. از اسکن گرفته شده از این مولد برای ساخت نمونه های milling توسط دستگاه تراش از دیسک های تیتانیومی و نمونه های EBM توسط دستگاه Arcam EBM system از پودر آلیاژ Ti-6Al-4V استفاده شد. قبل از پرسلن گذاری نمونه ها تحت سندبلاست با ذرات آلومینیوم اکساید 110 میکرونی قرار گرفتند و توسط یک لایه نازک تیتانیوم باندینگ پوشیده شدند سپس روی هر ۲۰ نمونه، پرسلن به ارتفاع ۱/۱ میلی متر در فضای مستطیل شکلی در وسط نمونه به ابعاد ۳×۸ میلی متر قرار داده شد. تست Three point bending برای تمام نمونه ها انجام شد و میزان آن ثبت شد. مقادیر به دست آمده از میزان استحکام باند با آزمون t تجزیه و تحلیل شدند و سطح معنی داری 05/0 در نظر گرفته شد .
یافته ها:  استحکام باند به دست آمده در گروه EBM ( 67/3±36/34) MPa و در گروه 34/4±52/46MPa    بود که از لحاظ آماری بین دو گروه تفاوت معنا داری داشت. (001/0>p )
ﻧﺘﻴﺠﻪ ﮔﻴﺮی:  استحکام باند پرسلن و فریم فلزی تیتانیوم در روش milling از EBM بیشتر بود. با این حال هر دو گروه مقادیر استحکام باند بالاتر از حداقل میزان استاندارد ISO برای رستوریشن های فلز-سرامیک که 25 مگاپاسکال است را نشان دادند.
 
واژه‌های کلیدی: تیتانیوم، استحکام باند، CAD/CAM، EBM 
متن کامل [PDF 1084 kb]   (476 دریافت)    
نوع مطالعه: مطالعه اصیل | موضوع مقاله: پروتز
فهرست منابع
1. McLean JW. The science and art of dental ceramics. The nature of dental ceramics and their clinical use. 1979:79-82.
2. Fernandes Neto AJ, Panzeri H, Neves FD, Prado RAd, Mendonça G. Bond strength of three dental porcelains to Ni-Cr and Co-Cr-Ti alloys. Braz Dent J. 2006;17(1):24-8. [DOI:10.1590/S0103-64402006000100006] [PMID]
3. Wataha JC. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 2000;83(2):223-34. [DOI:10.1016/S0022-3913(00)80016-5] [PMID]
4. Haag P, Nilner K. Questions and answers on titanium-ceramic dental restorative systems: a literature study. Quintessence Int. 2007;38(1).
5. Haag P, Nilner K. Bonding between titanium and dental porcelain: A systematic review. Acta Odontol Scand. 2010;68(3):154-64. [DOI:10.3109/00016350903575260] [PMID]
6. Adell R, Eriksson B, Lekholm U, Brånemark P-I, Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990;5(4).
7. Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71-84. [DOI:10.1177/154411130201300108] [PMID]
8. Barão VA, Mathew MT, Assunção WG, Yuan JCC, Wimmer MA, Sukotjo C. Stability of cp‐Ti and Ti‐6 Al‐4 V alloy for dental implants as a function of saliva pH-an electrochemical study. Clin Oral Implants Res. 2012;23(9):1055-62. [DOI:10.1111/j.1600-0501.2011.02265.x] [PMID]
9. Brauner H. Titanium as dental material. A summary of the current position. Quintessenz Zahntechn. 1992;18:221-38.
10. Haag P, Khan F, Andersson M, Vult von Steyern P. Influence of firing conditions and production methods on fracture strength of titanium-based metal ceramic crowns.J Adhes Sci Technol. 2018;32(3):225-38. [DOI:10.1080/01694243.2017.1352119]
11. Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10-7. [DOI:10.1016/S0022-3913(03)00263-4] [PMID]
12. Cai Z, Bunce N, Nunn ME, Okabe T. Porcelain adherence to dental cast CP titanium: effects of surface modifications. Biomaterials. 2001;22(9):979-86. [DOI:10.1016/S0142-9612(00)00263-5] [PMID]
13. Papia E, Arnoldsson P, Baudinova A, Jimbo R, Von Steyern PV. Cast, milled and EBM-manufactured titanium, differences in porcelain shear bond strength. Dent Mater J. 2018;37(2):214-21. [DOI:10.4012/dmj.2016-404] [PMID]
14. Antanasova M, Jevnikar P. Bonding of dental ceramics to titanium: processing and conditioning aspects. Curr Oral Health Rep. 2016;3(3):234-43. [DOI:10.1007/s40496-016-0107-x]
15. Antanasova M, Kocjan A, Hočevar M, Jevnikar P. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J ProsthetDent. 2019. [DOI:10.1016/j.prosdent.2019.02.011] [PMID]
16. Iseri U, Özkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011:1105140129-. [DOI:10.4012/dmj.2010-101] [PMID]
17. Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20-32. [DOI:10.1016/j.jmbbm.2008.05.004] [PMID]
18. Kimura H, Horng C-J, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J. 1990;9(1):91-9,124. [DOI:10.4012/dmj.9.91] [PMID]
19. Adachi M, Mackert Jr J, Parry E, Fairhurst C. Oxide adherence and porcelain bonding to titanium and Ti-6A1-4V alloy. J Dent Res. 1990;69(6):1230-5. [DOI:10.1177/00220345900690060101] [PMID]
20. Antanasova M, Kocjan A, Kovač J, Žužek B, Jevnikar P. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J Prosthte Res. 2018;62(2):184-94. [DOI:10.1016/j.jpor.2017.08.007] [PMID]
21. Karlsson J, Norell M, Ackelid U, Engqvist H, Lausmaa J. Surface oxidation behavior of Ti-6Al-4V manufactured by Electron Beam Melting (EBM®). J Manuf Processes. 2015;17:120-6. [DOI:10.1016/j.jmapro.2014.08.005]
22. Hobo S, Shillingburg HT. Porcelain fused to metal: tooth preparation and coping design. J Prosthte Dent. 1973;30(1):28-36. [DOI:10.1016/0022-3913(73)90075-9] [PMID]
23. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting. J Adv Prosthodont. 2017;9(1):52-6. [DOI:10.4047/jap.2017.9.1.52] [PMID] [PMCID]
24. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina--advanced technologies for the manufacturing of single crowns. Eur. J. of Prosthodon Restor Dent. 1999;7(4):113-9.
25. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D, et al. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag. 2014;13(2):446-52.
26. Li KC, Tran L, Prior DJ, Waddell JN, Swain MV. Porcelain bonding to novel Co-Cr alloys: influence of interfacial reactions on phase stability, plasticity and adhesion. Dent Mater. 2016;32(12):1504-12. [DOI:10.1016/j.dental.2016.09.008] [PMID]
27. Moffa J. Alternative dental casting alloys. Dental clinics of North America. 1983;27(4):733-46. [DOI:10.1016/S0011-8532(22)02287-X] [PMID]
28. Gupta A, Musani S, Dugal R, Jain N, Railkar B, Mootha A. A comparison of fracture resistance of endodontically treated teeth restored with bonded partial restorations and full-coverage porcelain-fused-to-metal crowns. Int J Periodontics Restorative Dent. 2014;34(3). [DOI:10.11607/prd.1706] [PMID]
29. Vafaee F, Firouz F, Alirezaii P, Gholamrezaii K, Khazaei S. Bond strength of porcelain to cobalt chromium dental alloy fabricated by selective laser melting and casting methods. Biosc Biotech Res Comm. 2017;10:424-30. [DOI:10.21786/bbrc/10.3/15]
30. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials: Elsevier Health Sciences; 2012.
31. Sukumaran V, Bharadwaj N. Ceramics in dental applications. Trends Biomater Artif Organs. 2006;20(1):5.
32. Togaya T. Studies on the dental casting of titanium alloy. Part IV Casting of pure titanium alloys with magnesia investment. J Japan Res Soc Dent Mat Appl. 1981;38(3):460-7.
33. Değirmenci BÜ, Ersoy NM. The effects of current production techniques on the surface roughness, oxide layer thickness and porcelain bond strength of cobalt-chromium and titanium substructures. International Dental Research. 2021;11(3):129-39. [DOI:10.5577/intdentres.2021.vol11.no3.1]
34. Reyes M, Oshida Y, Andres C, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: Effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117-36.
35. Maressa P, Anodio L, Bernasconi A, Demir AG, Previtali B. Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy. J Adhes J. 2015;91(7):518-37. [DOI:10.1080/00218464.2014.933809]
36. Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur. J. Prosthodont Restor Dent. 1999;7(1):15-21.
37. Henriques B, Faria S, Soares D, Silva FS. Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments. Mater. Sci. Eng. C. 2013;33(1):557-63. [DOI:10.1016/j.msec.2012.10.001] [PMID]
38. Carpenter MA, Goodkind RJ. Effect of varying surface texture on bond strength of one semiprecious and one nonprecious ceramo-alloy. J Prosthet Dent. 1979;42(1):86-95. [DOI:10.1016/0022-3913(79)90334-2] [PMID]
39. Toptan F, Alves AC, Henriques B, Souza JC, Coelho R, Silva FS, et al. Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength. J Mech Behav Biomed Mater. 2013;20:327-37. [DOI:10.1016/j.jmbbm.2013.02.003] [PMID]
40. Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J Mater Process Technol. 2013;213(12):2109-18. [DOI:10.1016/j.jmatprotec.2013.06.010]
41. Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N. Additive manufacturing of titanium alloys for orthopedic applications: a materials science viewpoint. Adv Eng Mater. 2018;20(9):1800172. [DOI:10.1002/adem.201800172]
42. Lee D-H, Lee B-J, Kim S-H, Lee K-B. Shear bond strength of porcelain to a new millable alloy and a conventional castable alloy. J. Prosthet Dent. 2015;113(4):329-35. [DOI:10.1016/j.prosdent.2014.09.016] [PMID]
43. Tróia Jr MG, Henriques GE, Nóbilo MA, Mesquita MF. The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy. Dent Mater. 2003;19(8):790-6. [DOI:10.1016/S0109-5641(03)00027-7] [PMID]
44. Lee B-A, Kim O-S, Vang M-S, Park Y-J. Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain. The Journal of Prosthetic Dentistry. 2013;109(2):95-105. [DOI:10.1016/S0022-3913(13)60023-2] [PMID]
45. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119(3):481-7. [DOI:10.1016/j.prosdent.2017.04.007] [PMID]
46. McLean JW. The science and art of dental ceramics. The nature of dental ceramics and their clinical use. 1979:79-82.
47. Fernandes Neto AJ, Panzeri H, Neves FD, Prado RAd, Mendonça G. Bond strength of three dental porcelains to Ni-Cr and Co-Cr-Ti alloys. Braz Dent J. 2006;17(1):24-8. [DOI:10.1590/S0103-64402006000100006] [PMID]
48. Wataha JC. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 2000;83(2):223-34. [DOI:10.1016/S0022-3913(00)80016-5] [PMID]
49. Haag P, Nilner K. Questions and answers on titanium-ceramic dental restorative systems: a literature study. Quintessence Int. 2007;38(1).
50. Haag P, Nilner K. Bonding between titanium and dental porcelain: A systematic review. Acta Odontol Scand. 2010;68(3):154-64. [DOI:10.3109/00016350903575260] [PMID]
51. Adell R, Eriksson B, Lekholm U, Brånemark P-I, Jemt T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990;5(4).
52. Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71-84. [DOI:10.1177/154411130201300108] [PMID]
53. Barão VA, Mathew MT, Assunção WG, Yuan JCC, Wimmer MA, Sukotjo C. Stability of cp‐Ti and Ti‐6 Al‐4 V alloy for dental implants as a function of saliva pH-an electrochemical study. Clin Oral Implants Res. 2012;23(9):1055-62. [DOI:10.1111/j.1600-0501.2011.02265.x] [PMID]
54. Brauner H. Titanium as dental material. A summary of the current position. Quintessenz Zahntechn. 1992;18:221-38.
55. Haag P, Khan F, Andersson M, Vult von Steyern P. Influence of firing conditions and production methods on fracture strength of titanium-based metal ceramic crowns.J Adhes Sci Technol. 2018;32(3):225-38. [DOI:10.1080/01694243.2017.1352119]
56. Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10-7. [DOI:10.1016/S0022-3913(03)00263-4] [PMID]
57. Cai Z, Bunce N, Nunn ME, Okabe T. Porcelain adherence to dental cast CP titanium: effects of surface modifications. Biomaterials. 2001;22(9):979-86. [DOI:10.1016/S0142-9612(00)00263-5] [PMID]
58. Papia E, Arnoldsson P, Baudinova A, Jimbo R, Von Steyern PV. Cast, milled and EBM-manufactured titanium, differences in porcelain shear bond strength. Dent Mater J. 2018;37(2):214-21. [DOI:10.4012/dmj.2016-404] [PMID]
59. Antanasova M, Jevnikar P. Bonding of dental ceramics to titanium: processing and conditioning aspects. Curr Oral Health Rep. 2016;3(3):234-43. [DOI:10.1007/s40496-016-0107-x]
60. Antanasova M, Kocjan A, Hočevar M, Jevnikar P. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J ProsthetDent. 2019. [DOI:10.1016/j.prosdent.2019.02.011] [PMID]
61. Iseri U, Özkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011:1105140129-. [DOI:10.4012/dmj.2010-101] [PMID]
62. Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20-32. [DOI:10.1016/j.jmbbm.2008.05.004] [PMID]
63. Kimura H, Horng C-J, Okazaki M, Takahashi J. Oxidation effects on porcelain-titanium interface reactions and bond strength. Dent Mater J. 1990;9(1):91-9,124. [DOI:10.4012/dmj.9.91] [PMID]
64. Adachi M, Mackert Jr J, Parry E, Fairhurst C. Oxide adherence and porcelain bonding to titanium and Ti-6A1-4V alloy. J Dent Res. 1990;69(6):1230-5. [DOI:10.1177/00220345900690060101] [PMID]
65. Antanasova M, Kocjan A, Kovač J, Žužek B, Jevnikar P. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J Prosthte Res. 2018;62(2):184-94. [DOI:10.1016/j.jpor.2017.08.007] [PMID]
66. Karlsson J, Norell M, Ackelid U, Engqvist H, Lausmaa J. Surface oxidation behavior of Ti-6Al-4V manufactured by Electron Beam Melting (EBM®). J Manuf Processes. 2015;17:120-6. [DOI:10.1016/j.jmapro.2014.08.005]
67. Hobo S, Shillingburg HT. Porcelain fused to metal: tooth preparation and coping design. J Prosthte Dent. 1973;30(1):28-36. [DOI:10.1016/0022-3913(73)90075-9] [PMID]
68. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting. J Adv Prosthodont. 2017;9(1):52-6. [DOI:10.4047/jap.2017.9.1.52] [PMID] [PMCID]
69. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina--advanced technologies for the manufacturing of single crowns. Eur. J. of Prosthodon Restor Dent. 1999;7(4):113-9.
70. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D, et al. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag. 2014;13(2):446-52.
71. Li KC, Tran L, Prior DJ, Waddell JN, Swain MV. Porcelain bonding to novel Co-Cr alloys: influence of interfacial reactions on phase stability, plasticity and adhesion. Dent Mater. 2016;32(12):1504-12. [DOI:10.1016/j.dental.2016.09.008] [PMID]
72. Moffa J. Alternative dental casting alloys. Dental clinics of North America. 1983;27(4):733-46. [DOI:10.1016/S0011-8532(22)02287-X] [PMID]
73. Gupta A, Musani S, Dugal R, Jain N, Railkar B, Mootha A. A comparison of fracture resistance of endodontically treated teeth restored with bonded partial restorations and full-coverage porcelain-fused-to-metal crowns. Int J Periodontics Restorative Dent. 2014;34(3). [DOI:10.11607/prd.1706] [PMID]
74. Vafaee F, Firouz F, Alirezaii P, Gholamrezaii K, Khazaei S. Bond strength of porcelain to cobalt chromium dental alloy fabricated by selective laser melting and casting methods. Biosc Biotech Res Comm. 2017;10:424-30. [DOI:10.21786/bbrc/10.3/15]
75. Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials: Elsevier Health Sciences; 2012.
76. Sukumaran V, Bharadwaj N. Ceramics in dental applications. Trends Biomater Artif Organs. 2006;20(1):5.
77. Togaya T. Studies on the dental casting of titanium alloy. Part IV Casting of pure titanium alloys with magnesia investment. J Japan Res Soc Dent Mat Appl. 1981;38(3):460-7.
78. Değirmenci BÜ, Ersoy NM. The effects of current production techniques on the surface roughness, oxide layer thickness and porcelain bond strength of cobalt-chromium and titanium substructures. International Dental Research. 2021;11(3):129-39. [DOI:10.5577/intdentres.2021.vol11.no3.1]
79. Reyes M, Oshida Y, Andres C, Barco T, Hovijitra S, Brown D. Titanium-porcelain system. Part III: Effects of surface modification on bond strengths. Biomed Mater Eng. 2001;11(2):117-36.
80. Maressa P, Anodio L, Bernasconi A, Demir AG, Previtali B. Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy. J Adhes J. 2015;91(7):518-37. [DOI:10.1080/00218464.2014.933809]
81. Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur. J. Prosthodont Restor Dent. 1999;7(1):15-21.
82. Henriques B, Faria S, Soares D, Silva FS. Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments. Mater. Sci. Eng. C. 2013;33(1):557-63. [DOI:10.1016/j.msec.2012.10.001] [PMID]
83. Carpenter MA, Goodkind RJ. Effect of varying surface texture on bond strength of one semiprecious and one nonprecious ceramo-alloy. J Prosthet Dent. 1979;42(1):86-95. [DOI:10.1016/0022-3913(79)90334-2] [PMID]
84. Toptan F, Alves AC, Henriques B, Souza JC, Coelho R, Silva FS, et al. Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength. J Mech Behav Biomed Mater. 2013;20:327-37. [DOI:10.1016/j.jmbbm.2013.02.003] [PMID]
85. Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J Mater Process Technol. 2013;213(12):2109-18. [DOI:10.1016/j.jmatprotec.2013.06.010]
86. Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N. Additive manufacturing of titanium alloys for orthopedic applications: a materials science viewpoint. Adv Eng Mater. 2018;20(9):1800172. [DOI:10.1002/adem.201800172]
87. Lee D-H, Lee B-J, Kim S-H, Lee K-B. Shear bond strength of porcelain to a new millable alloy and a conventional castable alloy. J. Prosthet Dent. 2015;113(4):329-35. [DOI:10.1016/j.prosdent.2014.09.016] [PMID]
88. Tróia Jr MG, Henriques GE, Nóbilo MA, Mesquita MF. The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy. Dent Mater. 2003;19(8):790-6. [DOI:10.1016/S0109-5641(03)00027-7] [PMID]
89. Lee B-A, Kim O-S, Vang M-S, Park Y-J. Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain. The Journal of Prosthetic Dentistry. 2013;109(2):95-105. [DOI:10.1016/S0022-3913(13)60023-2] [PMID]
90. Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119(3):481-7. [DOI:10.1016/j.prosdent.2017.04.007] [PMID]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rostamian A, nasermostofi S, Lawaf S. Comparison of the bond strength of porcelain to titanium substructure made by EBM or Milling method. J Res Dent Sci 2023; 20 (2) :15-24
URL: http://jrds.ir/article-1-1376-fa.html

رستمیان عبدالکریم، ناصرمستوفی شهباز، لواف شیرین. مقایسه استحکام باند بین پرسلن و زیرساخت فلزی تیتانیومی ساخته شده به دو روش Milling و EBM. مجله تحقیق در علوم دندانپزشکی. 1402; 20 (2) :15-24

URL: http://jrds.ir/article-1-1376-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 20، شماره 2 - ( فصلنامه تحقيق در علوم دندانپزشكي تابستان 1402 ) برگشت به فهرست نسخه ها
مجله تحقیق در علوم دندانپزشکی Res Dent Sci
Persian site map - English site map - Created in 0.06 seconds with 41 queries by YEKTAWEB 4657