[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Indexing & Abstracting::
::
(CC-BY 4.0)

AWT IMAGE

Journal of Research in Dental Sciences is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 21, Issue 4 (jrds 2024) ::
J Res Dent Sci 2024, 21(4): 251-258 Back to browse issues page
بررسی تأثیر غشاء کیتوسان بر ترمیم نقائص استخوانی در جمجمه (کالواریای) خرگوش
Mohammd reza Karimi , Amin Ghandehari Motlagh * , Farhood Najafi , Fatemeh Shahsavari , Ahmad Asghari
, dr.aminghm@gmail.com
Abstract:   (190 Views)

Background and Aim: In periodontal and implant regenerative treatments, the lack of bone healing presents serious issues. The Guided Bone Regeneration (GBR) method, is one of the most reliable methods for restoring these defects. Material and Methods: In this exprimental Study,  Defect with a diameter of 8 mm were created in the skulls of 18 New Zealand white rabbits. The chitosan membranes, were placed in the created defects in a clockwise manner, and one defect was left without a membrane as the control group. At intervals of 4 weeks and 8 weeks, the rabbits were sacrificed, and histological specimens were taken from the holes. These samples were examined histologically for new bone formation, the amount of inflammation and rivewed using statistical analyses.
Results: The rate of new bone formation in the fourth week was 7.50% in the chitosan group and 4.66% in the control group. In the eighth week, these values were 14.03% and 10.39%, respectively. No significant difference in bone formation was observed between the chitosan membrane group and the control group at both intervals (P>0.05). Inflammation levels in the eighth week were higher compared to the fourth week. a significant difference in inflammation intensity was observed between the fourth and eighth weeks (P<0.001). Additionally, a significant difference between the control group in the fourth week and the chitosan group was observed (P<0.001).
Conclusion: In order to bone formation and absence of necrosis, the membrane examined in this study has relatively suitable properties for bone regeneration and repair of bone defects.
 

Keywords: Bone-defects, Chitosan, Guided-bone-regeneration(GBR)
Full-Text [PDF 806 kb]   (152 Downloads)    
Type of Study: original article | Subject: Perio
References
1. Song JM, Shin SH, Kim YD Lee JY, Baek YJ, Yoon SY, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci. 2014; 6 (2): 87-93. [DOI:10.1038/ijos.2014.16] [PMID] []
2. Crowley C, Wong JM, Fisher DM, Khan WS. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther. 2013; 8 (3): 243-52. [DOI:10.2174/1574888X11308030009] [PMID]
3. Giannobile W.Rios H. Lang N. Bone as a tissue. In: Lindhe J. Lang N. Karring T. Clinical Periodontology and Implant Dentistry. Fifth ed. Oxford: Blackwel J Munksgaard, 2008. P:86.
4. Ku Y, Shim IK, Lee JY, Park YJ, Rhee SH, Nam SH, et al. Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration. J Biomed Mater Res A. 2009; 90 (3): 766-72. [DOI:10.1002/jbm.a.31846] [PMID]
5. Zhang K, Zhao M, Cai L, Wang Z-k, Sun Y-f, Hu Q-l. Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration. Chinese Journal of Polymer Science. 2010; 28 (4): 555-61. [DOI:10.1007/s10118-010-9087-9]
6. Greenstein G, Caton JG. Biodegradable barriers and guided tissue regeneration. Periodontol 2000. 1993; 1: 36-45. [DOI:10.1111/j.1600-0757.1993.tb00205.x]
7. Sagnella S, Mai-Ngam K. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids Surf B Biointerfaces. 2005; 42 (2): 147-55. [DOI:10.1016/j.colsurfb.2004.07.001] [PMID]
8. Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials. 2005; 26 (32): 6343-56. [DOI:10.1016/j.biomaterials.2005.03.036] [PMID]
9. Reynolds B, Leveque T, Buxton R. Wound healing III: Artificial maturation of arrested regenerate with an acetylated amino sugar. The American Surgeon. 1960; 26: 113-7. [DOI:10.1097/00006534-196008000-00028]
10. Xu Y, Du Y, Huang R, Gao L. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials. 2003; 24 (27): 5015-22. [DOI:10.1016/S0142-9612(03)00408-3] [PMID]
11. Khoshkhoonejad AA, Miremadi A,Rokn AR,Edslami B,Dehghan M, kalbasi H. Effect of GBR in Combination with Deproteinized Bovine Bone Mineral on the healing of Calvarial Defects in Rabbits.J of Dent, The Uni Med Sci.2006(3):77-86
12. Rokn AR, Khodadoostan MA, Reza Rasouli Ghahroudi AA, Motahhary P, Kharrazi Fard MJ, Bruyn HD, et al. Bone formation with two types of grafting materials: a histologic and histomorphometric study. Open Dent J. 2011; 5: 96-104. [DOI:10.2174/1874210601105010096] [PMID] []
13. Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, Herrero-Beaumont G. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006 Jan;35(1):34-41. doi: 10.1007/s00256-005-0022-z. Epub 2005 Oct 25. PMID: 16247642. [DOI:10.1007/s00256-005-0022-z] [PMID]
14. Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, Rybalsky I, Rutter MM. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2016 Nov;26(11):760-767. doi: 10.1016/j.nmd.2016.08.011. Epub 2016 Aug 22. PMID: 27614576. [DOI:10.1016/j.nmd.2016.08.011] [PMID]
15. Songfeng Xu, Kaili Lin, Zhen Wang, Jiang Chang, Lin Wang, Jianxi Lu, Congqin Ning,Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics, Biomaterials, 2008;29:2588-96. [DOI:10.1016/j.biomaterials.2008.03.013] [PMID]
16. Na KH, Lee HJ, Lee JE, Park JB. Regeneration of Rabbit Calvarial Defects with Combination of Stem Cells and Enamel Matrix Derivative: A Microcomputed Tomography and Histological Evaluation Comparing Two- and Three-Dimensional Cell Constructs. Medicina (Kaunas). 2024 Mar 8;60(3):451. doi: 10.3390/medicina60030451. PMID: 38541178; [DOI:10.3390/medicina60030451] [PMID] []
17. Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Craniomaxillofac Surg. 2008 Sep;36(6):354-9. doi: 10.1016/j.jcms.2008.02.005. Epub 2008 Apr 21. PMID: 18424059. [DOI:10.1016/j.jcms.2008.02.005] [PMID]
18. . Morimoto A, Porfirio Xavier S, Ricardo Silva E, Morinaga K, Botticelli D, Nakajima Y, Baba S. Critical-sized marginal defects around implants in the rabbit mandible. Oral Maxillofac Surg. 2024 Apr 12. doi: 10.1007/s10006-024-01233-2. Epub ahead of print. PMID: 38605114. [DOI:10.1007/s10006-024-01233-2] [PMID]
19. Sadeghi R, Najafi M,Semyari H,Mashhadiabbas F. Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft : An experimental study in rabbit. J Orofac Orthop. 2017 Mar;78(2):144-152. English. doi: 10.1007/s00056-016-0067-8. Epub 2017 Jan 27. PMID: 28130564. [DOI:10.1007/s00056-016-0067-8] [PMID]
20. De Oliveira JCS, Baggio AMP, Benetti LP, Delamura IF, Ramos EU, Bizelli VF, Bassi APF. Application of Tissue Engineering in Manufacturing Absorbable Membranes to Improve the Osteopromoting Potential of Collagen. Bioengineering (Basel). 2022 Dec 21;10(1):15. doi: 10.3390/bioengineering10010015. PMID: 36671587; PMCID: PMC9855111. [DOI:10.3390/bioengineering10010015] [PMID] []
21. Abou Fadel R, Samarani R, Chakar C. Guided bone regeneration in calvarial critical size bony defect using a double-layer resorbable collagen membrane covering a xenograft: a histological and histomorphometric study in rats. Oral Maxillofac Surg. 2018 Jun;22(2):203-213. doi: 10.1007/s10006-018-0694-x. Epub 2018 Apr 14. PMID: 29654386. [DOI:10.1007/s10006-018-0694-x] [PMID]
22. Van Leeuwen AC, Van Kooten TG, Grijpma DW, Bos RR. In vivo behaviour of a biodegradable poly(trimethylene carbonate) barrier membrane: a histological study in rats. J Mater Sci Mater Med. 2012 Aug;23(8):1951-9. doi: 10.1007/s10856-012-4663-x. Epub 2012 May 9. PMID: 22569734; PMCID: PMC3400755. [DOI:10.1007/s10856-012-4663-x] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi M R, Ghandehari Motlagh A, Najafi F, Shahsavari F, Asghari A. بررسی تأثیر غشاء کیتوسان بر ترمیم نقائص استخوانی در جمجمه (کالواریای) خرگوش. J Res Dent Sci 2024; 21 (4) :251-258
URL: http://jrds.ir/article-1-1534-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (jrds 2024) Back to browse issues page
مجله تحقیق در علوم دندانپزشکی Res Dent Sci
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4679