[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بانک‌ها و نمایه‌ها::
ثبت کد ارکید::
::
(CC-BY 4.0)

AWT IMAGE

Journal of Research in Dental Sciences is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"

..
مجله تحقیق در علوم دندانپزشکی دارای رتبه علمی-پژوهشی از وزارت بهداشت بوده و در پایگاه chemical abstract به عنوان نمایه سطح دو جهت ارتقای اعضای هیات علمی علوم پزشکی نمایه میگردد.
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
مجله تحقیق در علوم دندانپزشکی در آخرین گزارش پایگاه ISC دارای میانگین ضریب تاثیر0.223 در رشته دندانپزشکی می باشد.
..
:: دوره 21، شماره 3 - ( فصلنامه تحقیق در علوم دندانپزشکی پائیز 1403 ) ::
جلد 21 شماره 3 صفحات 250-242 برگشت به فهرست نسخه ها
کاربردهای هوش مصنوعی در دندانپزشکی- مروری بر مقالات
سام سبحانی ، افشین حراجی ، مرتضی نشاندار ، بهنام خسروانی فرد، ساندرا مهر علی زاده ، دنیا صدری*
گروه آسیب شناسی، دهان و فک وصورت دانشکده دندانپزشکی، دانشگاه علوم پزشکی آزاد اسلامی تهران، تهران، ایران
چکیده:   (541 مشاهده)
سابقه و هدف: هوش مصنوعی در علوم دندانپزشکی ابزاری قدرتمند برای تشخیص، درمان و پیشگیری است یکی از مهمترین کاربردهای هوش مصنوعی در علوم دندانپزشکی تشخیص دقیق از طریق تصاویر رادیولوژی است. الگوریتم های یادگیری عمیق، ماشین ها را قادر می سازد تا حتی از دندانپزشکان حرفه  ای تصاویر را بهتر تجزیه و تحلیل کنند. یکی دیگر از کاربردهای هوش مصنوعی در علم دندانپزشکی شخصی سازی درمان ها یا Dentistry  Individual  است. اسکنرها با ثبت وضعیت دهانی، بیمار و هوش مصنوعی با استفاده از اطلاعات ذخیره شده  است بهترین درمان را ارائه می دهند. الگوریتم  های هوش مصنوعی می توانند الگوهای پنهان را شناسایی کرده و به دندانپزشکان در اقدامات پیشگیرانه کمک کند. هوش مصنوعی امروزه جای خود را در آموزش و پژوهش دندانپزشکی نیز بازکرده است. هدف از این مقاله مروری بررسی کاربرد هوش مصنوعی در علم و هنر دندانپزشکی است.
مواد و روشها: این مطالعه مروری با استفاده از نسخه های الکترونیکی مقالات موجود در Pubmed /Medline  ، Scopus (Elsevier) ، Web of Sciences  (Claritive Analytics)  از سال 2020 الی 2023  با استفاده از کلمات کلیدی Arfificial Intelligence،Dentistry ، Education انجام شد. همه مطالعات به زبان انگلیسی بودند و در نهایت 123 مقاله در جستجو یافت شد که تعداد 43عدد با عناوین مورد نظر منطبق بودند، انتخاب و مورد بررسی قرار گرفتند.
نتیجه گیری: هوش مصنوعی ابزاری قابل اعتماد در تشخیص، افزایش کیفیت درمان و پیش بینی شکست های درمان های دندانپزشکی است  و محدودیت های آن شامل عدم آشنایی دندانپزشکان، تجهیزات گران قیمت و پیچیدگی  کار با آن می باشد و تا زمان رفع محدودیتها می تواند به عنوان ابزار کمکی در دندانپزشکی استفاده شود.
 
 
واژه‌های کلیدی: هوش مصنوعی، دندانپزشکی، ماشین لرنینگ
متن کامل [PDF 701 kb]   (304 دریافت)    
نوع مطالعه: مطالعه اصیل | موضوع مقاله: آموزش دندانپزشکی
فهرست منابع
1. Obermeyer Z., Emanuel E.J. Predicting the Future-Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016;375:1216. doi: 10.1056/NEJMp1606181 [DOI:10.1056/NEJMp1606181]
2. Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, Alam MK. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review. Biomed Res Int. 2021 Jun 22;2021:9751564. doi: 10.1155/2021/9751564. PMID: 34258283; PMCID: PMC8245240. [DOI:10.1155/2021/9751564]
3. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci. 2021 Jan;16(1):508-522. doi: 10.1016/j.jds.2020.06.019. Epub 2020 Jun 30. PMID: 33384840; PMCID: PMC7770297. [DOI:10.1016/j.jds.2020.06.019]
4. Bonny T, Al Nassan W, Obaideen K, Al Mallahi MN, Mohammad Y, El-Damanhoury HM. Contemporary Role and Applications of Artificial Intelligence in Dentistry. F1000Res. 2023 Sep 20;12:1179. doi: 10.12688/f1000research.140204.1. PMID: 37942018; PMCID: PMC10630586. [DOI:10.12688/f1000research.140204.1]
5. Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, Mareková S, Fountoulaki G, Kosnáčová H, Varga I. Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel). 2022 Jul 8;10(7):1269. doi: 10.3390/healthcare10071269. PMID: 35885796; PMCID: PMC9320442. [DOI:10.3390/healthcare10071269]
6. Choi J.W., Park H., In-Hwan Kim B.S., Kim N., Kwon S.-M., Lee J.Y. Surgery-First Orthognathic Approach to Correct Facial Asymmetry: Artificial Intelligence-Based Cephalometric Analysis. Plast. Reconstr. Surg. 2022;149:496e-499e. [DOI:10.1097/PRS.0000000000008818]
7. Rasteau S., Ernenwein D., Savoldelli C., Bouletreau P. Artificial Intelligence for Oral and Maxillo-Facial Surgery: A Narrative Review. J. Stomatol. Oral Maxillofac. Surg. 2022;123:276-282 [DOI:10.1016/j.jormas.2022.01.010]
8. Gharavi S.M.H., Faghihimehr A. Clinical Application of Artificial Intelligence in PET Imaging of Head and Neck Cancer. PET Clin. 2022;17:65-76 [DOI:10.1016/j.cpet.2021.09.004]
9. Kishimoto T., Goto T., Matsuda T., Iwawaki Y., Ichikawa T. Application of Artificial Intelligence in the Dental Field: A Literature Review. J. Prosthodont. Res. 2022;66:19-28. [DOI:10.2186/jpr.JPR_D_20_00139]
10. Joshi V.K. Dental Treatment Planning and Management for the Mouth Cancer Patient. Oral Oncol. 2010;46:475-479. [DOI:10.1016/j.oraloncology.2010.03.010]
11. Bouletreau P., Makaremi M., Ibrahim B., Louvrier A., Sigaux N. Artificial Intelligence: Applications in Orthognathic Surgery. J. Stomatol. Oral Maxillofac. Surg. 2019;120:347-354. [DOI:10.1016/j.jormas.2019.06.001]
12. Patcas R., Bernini D.A.J., Volokitin A., Agustsson E., Rothe R., Timofte R. Applying Artificial Intelligence to Assess the Impact of Orthognathic Treatment on Facial Attractiveness and Estimated Age. Int. J. Oral Maxillofac. Surg. 2019;48:77-83 [DOI:10.1016/j.ijom.2018.07.010]
13. s: Ghods K, Azizi A, Jafari A, Ghods K. Application of Artificial Intelligence in Clinical Dentistry, a Comprehensive Review of literature. J Dent Shiraz Univ Med Sci. December 2023; 24(4): 356-371
14. Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: A scoping review. J Dent. 2019 Dec;91:103226. doi: 10.1016/j.jdent.2019.103226. Epub 2019 Nov 5. PMID: 31704386 [DOI:10.1016/j.jdent.2019.103226]
15. Faber J., Faber C., Faber P. Artificial Intelligence in Orthodontics. APOS Trends Orthod. 2019;9:201-205. [DOI:10.25259/APOS_123_2019]
16. Müller A., Mertens S.M., Göstemeyer G., Krois J., Schwendicke F. Barriers and Enablers for Artificial Intelligence in Dental Diagnostics: A Qualitative Study. J. Clin. Med. 2021;10:1612 [DOI:10.3390/jcm10081612]
17. Tanikawa C., Yamashiro T. Development of Novel Artificial Intelligence Systems to Predict Facial Morphology after Orthognathic Surgery and Orthodontic Treatment in Japanese Patients. Sci. Rep. 2021;11:15853 [DOI:10.1038/s41598-021-95002-w]
18. Thurzo A., Kurilová V., Varga I. Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-TeleHealth System. Healthcare. 2021;9:1695 [DOI:10.3390/healthcare9121695]
19. Impellizzeri A., Horodinsky M., Barbato E., Polimeni A., Salah P., Galluccio G. Dental Monitoring Application: It Is a Valid Innovation in the Orthodontics Practice? Clin. Ter. 2020;171:260-267.
20. Roisin L.-C., Brézulier D., Sorel O. Remotely-Controlled Orthodontics: Fundamentals and Description of the Dental Monitoring System. J. Dentofac. Anom. Orthod. 2016;19:408. [DOI:10.1051/odfen/2016021]
21. Fatima A., Shahid A.R., Raza B., Madni T.M., Janjua U.I. State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. J. Digit. Imaging. 2020;33:1443-1464 [DOI:10.1007/s10278-020-00367-5]
22. MacHoy M.E., Szyszka-Sommerfeld L., Vegh A., Gedrange T., Woźniak K. The Ways of Using Machine Learning in Dentistry. Adv. Clin. Exp. Med. 2020;29:375-384. [DOI:10.17219/acem/115083]
23. Ding H, Wu J, Zhao W, Matinlinna JP, Burrow MF and Tsoi JKH (2023) Artificial intelligence in dentistry-A review. Front. Dent. Med 4:1085251 [DOI:10.3389/fdmed.2023.1085251]
24. Huang Y-P, Lee S-Y. An Effective and Reliable Methodology for Deep Machine Learning Application in Caries Detection. medRxiv (2021)
25. Kim E-H, Kim S, Kim H-J, Jeong H-o, Lee J, Jang J, et al. Prediction of chronic periodontitis severity using machine learning models based on salivary bacterial copy number. Front Cell Infect. (2020) 10:69 [DOI:10.3389/fcimb.2020.571515]
26. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. (2019) 9 (1):1-6 [DOI:10.1038/s41598-019-44839-3]
27. Yang J, Xie Y, Liu L, Xia B, Cao Z, Guo C. Automated dental image analysis by deep learning on small dataset. In2018 IEEE 42nd annual computer software and applications conference. COMPSAC. 2018; 1: 492-497 [DOI:10.1109/COMPSAC.2018.00076]
28. Wei J, Peng M, Li Q, Wang Y. Evaluation of a novel computer color matching system based on the improved back-propagation neural network model. J Prosthodont. (2018) 27(8):775-83 [DOI:10.1111/jopr.12561]
29. Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI. Journal of Dental Research. 2019;98(11):1234-1238. [DOI:10.1177/0022034519867641]
30. Cheng C, Cheng X, Dai N, Jiang X, Sun Y, Li W. Prediction of facial deformation after complete denture prosthesis using BP neural network. Comput Biol Med. (2015) 66:103-12 [DOI:10.1016/j.compbiomed.2015.08.018]
31. minoshariae A, Kulild J, Nagendrababu V. Artificial Intelligence in Endodontics: Current Applications and Future Directions. J Endod. 2021; 47: 1352-1357 [DOI:10.1016/j.joen.2021.06.003]
32. Boreak N. Effectiveness of artificial intelligence aplications designed for endodontic diagnosis, decisionmaking, and prediction of prognosis: A systematic review. J Contemp Dent Pract. 2020; 21: 926-934 [DOI:10.5005/jp-journals-10024-2894]
33. Saghiri MA, Garcia-Godoy F, Gutmann JL. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. J Endod. 2012; 38: 1130-1134- [DOI:10.1016/j.joen.2012.05.004]
34. Poswar F, Farias L, de Carvalho Fraga C, Bambirra W, Brito-Júnior M, Sousa-Neto M, et al. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J. Endod. 2015; 41: 877-883 [DOI:10.1016/j.joen.2015.02.004]
35. Mahmood H, Shaban M, Indave BI, Santos-Silva AR, Rajpoot N, Khurram SA. Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review. Oral Oncol. 2020; 110: 104885 [DOI:10.1016/j.oraloncology.2020.104885]
36. Mäkitie AA, Alabi RO, Ng SP, Takes RP, Robbins KT, Ronen O, Shaha AR, Bradley PJ, Saba NF, Nuyts S, Triantafyllou A, Piazza C, Rinaldo A, Ferlito A. Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews. Adv Ther. 2023 Aug;40(8):3360-3380. [DOI:10.1007/s12325-023-02527-9]
37. Alabi RO, Youssef O, Pirinen M, Elmusrati M, Mäkitie AA, Leivo I, Almangush A. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif Intell Med. 2021 May;115:102060. [DOI:10.1016/j.artmed.2021.102060]
38. Thurzo, A.; Strunga, M.; Urban, R.; Surovková, J.; Afrashtehfar, K.I. Impact of Artificial Intelligence on Dental Education: A Review and Guide for Curriculum Update. Educ. Sci. 2023, 13, 150. [DOI:10.3390/educsci13020150]
39. Saghiri MA, Vakhnovetsky J, Nadershahi N. Scoping review of artificial intelligence and immersive digital tools in dental education. J Dent Educ. 2022 Jun;86(6):736-750. [DOI:10.1002/jdd.12856]
40. Khazaei AH, Amirpour Haradasht S, Shahraki M. [Artificial Intelligence and Dental Education in Iran: Current Situation and Challenges (Persian)]. Development Strategies in Medical Education. 2023; 9(4):8-11
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sobhani1 S, haraji A, neshandar M, Mehralizadeh5 S. Application of Artificial Intelligence in Dentistry- A Review Article. J Res Dent Sci 2024; 21 (3) :242-250
URL: http://jrds.ir/article-1-1530-fa.html

سبحانی سام، حراجی افشین، نشاندار مرتضی، خسروانی فرد بهنام، مهر علی زاده ساندرا، صدری دنیا. کاربردهای هوش مصنوعی در دندانپزشکی- مروری بر مقالات. مجله تحقیق در علوم دندانپزشکی. 1403; 21 (3) :242-250

URL: http://jrds.ir/article-1-1530-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 21، شماره 3 - ( فصلنامه تحقیق در علوم دندانپزشکی پائیز 1403 ) برگشت به فهرست نسخه ها
مجله تحقیق در علوم دندانپزشکی Res Dent Sci
Persian site map - English site map - Created in 0.05 seconds with 41 queries by YEKTAWEB 4660