[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بانک‌ها و نمایه‌ها::
ثبت کد ارکید::
::
(CC-BY 4.0)

AWT IMAGE

Journal of Research in Dental Sciences is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"

..
مجله تحقیق در علوم دندانپزشکی دارای رتبه علمی-پژوهشی از وزارت بهداشت بوده و در پایگاه chemical abstract به عنوان نمایه سطح دو جهت ارتقای اعضای هیات علمی علوم پزشکی نمایه میگردد.
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
مجله تحقیق در علوم دندانپزشکی در آخرین گزارش پایگاه ISC دارای میانگین ضریب تاثیر0.223 در رشته دندانپزشکی می باشد.
..
:: دوره 22، شماره 3 - ( فصلنامه تحقیق در علوم دندانپزشکی پاییز 1404 ) ::
جلد 22 شماره 3 صفحات 283-266 برگشت به فهرست نسخه ها
کاربرد هوش مصنوعی در تشخیص پوسیدگی دندان: مرور پیشرفت‌ها و چالش‌ها
میترا منتظرلطف ، مهرداد حسینی شکیب* ، رضا رادفر ، مینا خیام زاده
گروه مدیریت صنعتی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران. ، mehrdad.shakib@kiau.ac.ir
چکیده:   (343 مشاهده)
سابقه و هدف: پوسیدگی دندان شایع‌ترین بیماری مزمن جهانی است که نیازمند تشخیص زودهنگام برای پیشگیری از درمان‌های تهاجمی است. روش‌های سنتی تشخیص محدودیت‌هایی دارند، به‌ویژه در تشخیص ضایعات اولیه. هدف این مطالعه بررسی پیشرفت‌ها و چالش‌های کاربرد هوش مصنوعی در تشخیص پوسیدگی دندان است.
 مواد و روش ها: مرور روایی مقالات منتشر شده بین سال‌های 2015-2025 در پایگاه‌های داده معتبر علمی شامل PubMed، Scopus، Science Direct، IEEE Xplore، Web of Science و Google Scholar انجام شد. کیفیت مطالعات با ابزار QUADAS-2 ارزیابی و داده‌ها بر اساس روش‌های هوش مصنوعی، نوع تصویربرداری و معیارهای عملکرد تحلیل شدند.
یافته‌ها: شبکه‌های عصبی کانولوشن (CNN) و مشتقات آن مانند U-Net، Mask R-CNN و DenseNet، پرکاربردترین الگوریتم‌ها در تشخیص پوسیدگی هستند. دقت تشخیصی این سیستم‌ها در بسیاری موارد برابر یا بهتر از متخصصان دندانپزشکی بوده، به‌ویژه در تشخیص ضایعات اولیه. عملکرد هوش مصنوعی در انواع مختلف تصویربرداری دندانی از 71 درصد تا 99/2درصد متغیر بود.
نتیجه‌گیری: هوش مصنوعی پتانسیل قابل توجهی برای تحول در تشخیص پوسیدگی دندان دارد، به‌ویژه در شناسایی ضایعات اولیه که برای مداخلات پیشگیرانه غیرتهاجمی حیاتی است. بهترین رویکرد، "هوش مصنوعی کمکی" است که به عنوان مکمل قضاوت بالینی انسان عمل می‌کند و نه جایگزین آن. چالش‌های اصلی شامل محدودیت‌های مجموعه داده، عدم استانداردسازی روش‌ها و گزارش‌دهی، مشکلات ادغام در گردش کار بالینی، نیاز به شفافیت و قابلیت توضیح، و مسائل اخلاقی-قانونی است. جهت‌گیری‌های آینده شامل توسعه مجموعه داده‌های بزرگتر و متنوع‌تر، رویکردهای چندمدلی، بهبود روش‌های توضیح مدل‌ها، انجام مطالعات بالینی طولی و توسعه استانداردهای مناسب است
واژه‌های کلیدی: هوش مصنوعی، پوسیدگی دندان، یادگیری عمیق، رادیوگرافی دندان، شبکه عصبی کانولوشن
متن کامل [PDF 714 kb]   (259 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: بیماری دهان
فهرست منابع
1. Ayhan B, Ayan E, Atsü S. Detection of dental caries under fixed dental prostheses by analyzing digital panoramic radiographs with artificial intelligence algorithms based on deep learning methods. BMC Oral Health 2025;25(1):216 [DOI:10.1186/s12903-025-05577-3] [PMID] []
2. Abbott LP, Saikia A, Anthonappa RP. Artificial intelligence platforms in dental caries detection: A systematic review and meta-analysis. J Evid Based Dent Pract 2025;25(1):102077. [DOI:10.1016/j.jebdp.2024.102077] [PMID]
3. Lian L, Zhu T, Zhu F, Zhu H. Deep learning for caries detection and classification. Diagnostics 2021;11(9):1672. [DOI:10.3390/diagnostics11091672] [PMID] []
4. Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges. J Dent Res 2020;99(7):769-74. [DOI:10.1177/0022034520915714] [PMID] []
5. Babaii S, Saberi N, Bahreini M. An ethical analysis of the emotional relationship between humans and artificial intelligence. J Sci Tech Policy 2024;17(4):19-30. [In Persian].
6. Boy AF, Akhyar A, Arif TY, Syahrial S. Development of an artificial intelligence model based on MobileNetV3 for early detection of dental caries using smartphone images: A preliminary study. Adv Sci Tech Res J 2025;19(4):109-16. [DOI:10.12913/22998624/200308]
7. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018;77:106-11. [DOI:10.1016/j.jdent.2018.07.015] [PMID]
8. Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schürmann F, et al. Caries detection with near-infrared transillumination using deep learning. J Dent Res 2019;98(11):1227-33. [DOI:10.1177/0022034519871884] [PMID] []
9. Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac Radiol 2022;51(1):20210197. [DOI:10.1259/dmfr.20210197] [PMID] []
10. Mertens S, Krois J, Cantu AG, Arsiwala LT, Schwendicke F. Artificial intelligence for caries detection: Randomized trial. J Dent 2021;115:103849. [DOI:10.1016/j.jdent.2021.103849] [PMID]
11. Li S, Liu J, Zhou Z, Zhou Z, Wu X, Li Y, et al. Artificial intelligence for caries and periapical periodontitis detection. J Dent 2022;122:104107. [DOI:10.1016/j.jdent.2022.104107] [PMID]
12. Karhade DS, Roach J, Shrestha P, Simancas-Pallares MA, Ginnis J, Burk ZJ, et al. An automated machine learning classifier for early childhood caries. Pediatr Dent 2021;43(3):191-7.
13. Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. In: Artificial Intelligence in Healthcare. Academic Press; 2020. p. 295-336. [DOI:10.1016/B978-0-12-818438-7.00012-5] []
14. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent 2019;49(1):1. [DOI:10.5624/isd.2019.49.1.1] [PMID] []
15. Mohammad-Rahimi H, Motamedian SR, Rohban MH, Krois J, Uribe SE, Mahmoudinia E, et al. Deep learning for caries detection: A systematic review. J Dent 2022;122:104115. [DOI:10.1016/j.jdent.2022.104115] [PMID]
16. Lee S, Oh SI, Jo J, Kang S, Shin Y, Park JW. Deep learning for early dental caries detection in bitewing radiographs. Sci Rep 2021;11(1):16807. [DOI:10.1038/s41598-021-96368-7] [PMID] []
17. Moutselos K, Berdouses E, Oulis C, Maglogiannis I. Recognizing occlusal caries in dental intraoral images using deep learning. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019. p. 1617-20. [DOI:10.1109/EMBC.2019.8856553] [PMID]
18. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent 2020;100:103425. [DOI:10.1016/j.jdent.2020.103425] [PMID]
19. Zhang X, Liang Y, Li W, Liu C, Gu D, Sun W, et al. Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis 2022;28(1):173-81. [DOI:10.1111/odi.13735] [PMID]
20. Park EY, Cho H, Kang S, Jeong S, Kim EK. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 2022;22(1):573.12 [DOI:10.1186/s12903-022-02589-1] [PMID] []
21. Qayyum A, Tahir A, Butt MA, Luke A, Abbas HT, Qadir J, et al. Dental caries detection using a semi-supervised learning approach. Sci Rep 2023;13(1):749. [DOI:10.1038/s41598-023-27808-9] [PMID] []
22. Kühnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Caries detection on intraoral images using artificial intelligence. J Dent Res 2022;101(2):158-65. [DOI:10.1177/00220345211032524] [PMID] []
23. Singh P, Sehgal P. GV Black dental caries classification and preparation technique using optimal CNN-LSTM classifier. Multimed Tools Appl 2020;80(4):5255-72. [DOI:10.1007/s11042-020-09891-6]
24. Aghayari P, Karimmian Z. Governance and artificial intelligence: A scientometric narrative of two interwoven stories. J Sci Tech Policy 2024;17(4):1-17. [In Persian].
25. Zanini LGK, Rubira-Bullen IRF, Nunes FDLS. A systematic review on caries detection, classification, and segmentation from X-ray images: Methods, datasets, evaluation, and open opportunities. J Imaging Inform Med. 2024;37(4):1824-45. [DOI:10.1007/s10278-024-01054-5] [PMID] []
26. Zhu H, Cao Z, Lian L, Ye G, Gao H, Wu J. CariesNet: A deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Comput Appl. 2023;1-9.
27. Majanga V, Viriri S. Automatic blob detection for dental caries. Appl Sci. 2021;11(19):9232. [DOI:10.3390/app11199232]
28. Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela O, et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics 2020;10(6):430. [DOI:10.3390/diagnostics10060430] [PMID] []
29. Lee JH, Kim YT, Lee JB, Jeong SN. A performance comparison between automated deep learning and dental professionals in classification of dental implant systems from dental imaging: A multi-center study. Diagnostics. 2020;10(11):910. [DOI:10.3390/diagnostics10110910] [PMID] []
30. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 2019;9(1):8495. [DOI:10.1038/s41598-019-44839-3] [PMID] []
31. Geetha V, Aprameya KS, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Info Sci Syst 2020;8:1-14. [DOI:10.1007/s13755-019-0096-y] [PMID] []
32. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett 2020;471:61-71. [DOI:10.1016/j.canlet.2019.12.007] [PMID]
33. Young DA, Nový BB, Zeller GG, Hale R, Hart TC, Truelove EL, et al. The American Dental Association caries classification system for clinical practice: A report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc 2015;146(2):79-86. [DOI:10.1016/j.adaj.2014.11.018] [PMID]
34. Kanagamalliga S, Jayashree R, Guna R. Fast R-CNN approaches for transforming dental caries detection: An in-depth investigation. In 2024 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) 2024. p. 1-5. [DOI:10.1109/WiSPNET61464.2024.10532984] []
35. Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal 2016;31:63-76. [DOI:10.1016/j.media.2016.02.004] [PMID]
36. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ 2023;23(1):689. [DOI:10.1186/s12909-023-04698-z] [PMID] []
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

montazerlotf M, Hosseini Shakib M, radfar R, khayamzadeh M. Application of Artificial Intelligence in Dental Caries Detection: Advances and Challenges. J Res Dent Sci 2025; 22 (3) :266-283
URL: http://jrds.ir/article-1-1587-fa.html

منتظرلطف میترا، حسینی شکیب مهرداد، رادفر رضا، خیام زاده مینا. کاربرد هوش مصنوعی در تشخیص پوسیدگی دندان: مرور پیشرفت‌ها و چالش‌ها. مجله تحقیق در علوم دندانپزشکی. 1404; 22 (3) :266-283

URL: http://jrds.ir/article-1-1587-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 22، شماره 3 - ( فصلنامه تحقیق در علوم دندانپزشکی پاییز 1404 ) برگشت به فهرست نسخه ها
مجله تحقیق در علوم دندانپزشکی Res Dent Sci
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4722