بررسی ارتباط سیگاری غیر فعال و میزان ظرفیت آن‌تی اکسیدان نام و پراکسیداسیون لیپیدی براق در نوجوانان ۱۲-۱۵سال

دکتر مینا معتمد نژاد، دکتر مهدی یورامب، دکتر نیلوفر جابانی، دکتر مجتبی رزگرامی، دکتر علی یزدانی، دکتر فاطمه پارمید.

خلاصه:
سایه و هدف: سیگاری غیر فعال (Passive Smoking) یکی از مشکلات مهم سلامت عمومی می‌باشد و کودکان حساس ترین گروهی در معرض دود انسانی قرار می‌دهد. هدف از این مطالعه بررسی ارتباط و وضعیت انسانی سیگاری غیر فعال و ظرفیت آن‌تی اکسیدان نام و پراکسیداسیون لیپیدی براق در نوجوانان ۱۲-۱۵سال می‌باشد.

مواد و روش ها: این مطالعه همبستگی تاریخی بود که بر روی ۱۲۰ نوجوان ۱۲-۱۵سال انجام شد. گروه مورد افراد سیگاری غیر فعال و گروه کنترل کودکان غیر سیگاری بود. این مطالعه از نظر سن و جنس مشابهی و دارای براق غیر‌تحکیکی دو گروه به روش Spitting و گروه جمع آوری شد و تا شبیه‌سازی ظرفیت آن‌تی اکسیدان طراحی یافت نمود. ۱۲۱۸ از آن‌ها از آزمون‌آمیز، یکمین آزمایش بافت‌ها، ۱۲۷۸ frapez (FRAP) و پراکسیداسیون لیپیدی از براق روش independent T-test استفاده شد.

نتیجه‌گیری: در نتیجه گزارشی، به نظر می‌رسد قرار گرفتن در معرض دود سیگار در نوجوانان موجب کاهش ظرفیت آن‌تی اکسیدان نام و پراکسیداسیون لیپیدی براق شده و این نوع سلامت حرفه دهان را به خطر انداخت.

کلید واژه‌ها: سیگاری غیر فعال، سیگار، آن‌تی اکسیدان، پراکسیداسیون لیپیدی، براق وصل مقاله: ۱۲/۱۸؛ اصلاح نهایی: ۱۲/۳۱; پذیرش مقاله: ۱۲/۴/۱۳۹۷

مقدمه:
سیگاری غیر فعال یا اکسپوز بودن با دود تنبیکی موجود در محیط برای کودکان حیاتی و موثر بوده و در نوزادان، خطر سندرم مرگ ناگهانی و وزن adverse lipid کم در زمان تولید افزایش می‌دهد و موجب شده که کاهش در تجربه هوموگلوبین profile را دیده‌ایست. ۱) رادیکال‌های آزاد و گونه‌های واکنش آسیب‌زای (ROS) که توسط معاین مختلط مثل سلول‌های المیا باید آلایند های محیطی تولید می‌شوند، می‌توانند هم‌پیمان برای بسایی از بیماری‌ها و اختلالات بدنی است. ۲) به خوبی # نوسانه مسئولیتگر: دکتر مهمن، دکتر نیلوفر جابانی، دکتر مجتبی رزگرامی، دکتر علی یزدانی، دکتر فاطمه پارمید.

پرستش: دانشکده‌ی دندانپزشکی بابل، بیمارستان‌های مهیا، بیمارستان‌ها، دانشگاه علوم پزشکی بابل.
مواد و روش‌ها:
تحقیقی طراحی همگونی- تاریخی انجام گرفت و تعداد 60 نوجوان ۱۵ تا ۱۵ ساله مقطع راهنمایی در دو گروه ۳۰ تایی مورد بررسی قرار گرفتند. گروه مورد سیگاری غیر قابل و گروه شاهد غیر سیگاری بودند. و با معیارهای کتبی رفع و با استفاده از کوتینین برای انتخاب شده. (۱) لذا از بین آن ۳۰ نفر سیگاری غیر قابل (کوتینین براق بشتر از ۰.۵ نانومتر) به عنوان گروه مورد و ۳۰ نفر غیر سیگاری (کوتینین براق کمتر از ۰.۵ نانومتر در میلی لیتر) به عنوان گروه شاهد چرخ مطالعه شدند. نتیجه از هر گروه مونت و نیم مزدک بودند. دو گروه از نظر سن تغییر مشابه شدند. معیارهای ورود به مطالعه شامل: سال ۱۲ تا ۱۵ سال، عدم وجود بخاری سیستمیکه، عدم مصرف هر گونه دارو شامل داروهای ایمونوسایرسیپور، مکمل های ویتامینی و NSIADs، عدم وجود برودنتیت با ایال و شبنم چسبندگی به مساحت یا بیش از ۳ میلی‌متر، عدم وجود پوست‌پدپهایی. rampant قبل از شروع کار از دویند رضایت نامه کتابی که در پروشناهبا کمک و کمک و کمک اینک واقع در تسویه فرد بروهره چکیل شد.

نمونه‌گیری براق:
تمامی نمونه‌ها بین ساعت ۹-۱۱ صبح جمع آوری شد و ۹۰ دقیقه قبل از نمونه گیری، از خوردن، آشامیدن، و دعوت ژن برضوزن و سپس به حجم ۳ لیتر جمع آوری شدند. با توجه به روش Spitting برای تحقیق به روش Alzheimers، با توجه به روش ۱۱ دقیقه پس از خورد، ۱۰ دقیقه در نشسته و کاملا راحت بوده و با چشم‌انداز، با در حالت نشیمنگان جمع آوری ایجاد شد. در حالت با استفاده در حالی که کمی به سمت جلو خم شده بود، برای خود را در مدت ۱۰ دقیقه و در ۲-۱۰ دقیقه ۱-۱۰ بار در لوله آزمایش تخلیه می‌کنند. (۲) یا توجه به این آمیزه که کوتینین و نوجوانان جزء باریا صرفه در نوعیتی موجود در محیط هستند و با نظر به اینکه اثرات امکان‌پذیر سیگاری غیر قابل اثرات امکان‌پذیر و آتروژنیک ناشی از سیگاری غیر قابل اثرات امکان‌پذیر فعال در برگزاری انجام شده است، در این مطالعه به بررسی اثرات سیگاری غیر قابل اثرات امکان‌پذیر فعال بر سیگاری غیر قابل اثرات امکان‌پذیر فعال در نوجوانان آنتی اسکیدین تام و براکسیداسون لیپیدی براق در نوجوانان ۱۵ تا ۱۰ سال پرداخته شده است.

مراحل آزمایش‌گاهی
بعد از جمع آوری براق در لوله آزمایش، درب آن محکم بسته شد و در اسرع وقت به آزمایش‌گاه بوسیله می‌نقل گردید.
همچنین میزان آنتی اکسیدان در افراد دو گروه در هر دو جنس در افراد سیگاری غیر فعال نسبت به افراد غیر

<table>
<thead>
<tr>
<th>P Value</th>
<th>شاهرود</th>
<th>انتی اکسیدان براق</th>
<th>پراکسیداسیون</th>
<th>پراکسیداسیون</th>
<th>انتی اکسیدان براق</th>
<th>پراکسیداسیون</th>
<th>ليبیدی</th>
<th>پراکسیداسیون</th>
<th>ليبیدی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.32</td>
<td>0.121</td>
<td>0.511</td>
<td>0.511</td>
<td>0.121</td>
<td>0.511</td>
<td>0.143</td>
<td>0.511</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

سیگاری گاهی معمولی داشت، افزایش در پراکسیداسیون ليبیدی در هر دو جنس در هر دو گروه دیده شدکه تفاوت از نظر آماری معنی دارد (جدول 2).

جدول 2- میزان آنتی اکسیدان و پراکسیداسیون ليبیدی در دو گروه سیگاری غیر فعال و غیر سیگاری به تفکیک جنس (بر حسب میکرومول)

<table>
<thead>
<tr>
<th>P value</th>
<th>شاهرود</th>
<th>انتی اکسیدان براق</th>
<th>پراکسیداسیون</th>
<th>پراکسیداسیون</th>
<th>انتی اکسیدان براق</th>
<th>پراکسیداسیون</th>
<th>ليبیدی</th>
<th>پراکسیداسیون</th>
<th>ليبیدی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.32</td>
<td>0.121</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

یافته‌ها:
این مطالعه بر روی ۶۰ نوکول ۱۲۱۵ ساله در دو گروه ۳۰ نفره سیگاری غیر فعال و غیر سیگاری انجام شد. سن افراد شاهد ۵/۳/۱۶ و در گروه مورد ۱۲/۸/۱۸ (P<0.08) میزان آنتی اکسیدان براق و پراکسیداسیون ليبیدی به تفکیک گروه در جدول 1 ارزش گردید و نشان می‌دهد که در گروه سیگاری غیر فعال نسبت به سیگاری میزان آنتی اکسیدان براق به میزان ۷۲ میکرومول و با ۱/۸ درصد کمتر است.(P<0.02) در گروه سیگاری غیر فعال نسبت به سیگاری میزان پراکسیداسیون ليبیدی، به شدت شاکر رواج و افزایش میزان دارند. (P<0.01) (جدول 1)

جدول 1- میزان آنتی اکسیدان و پراکسیداسیون ليبیدی در دو گروه سیگاری غیر فعال و غیر سیگاری (بر حسب میکرومول)
دانه: مینا مطلوب زاد و همکاران ترکیبات آنتی-اکسیدانی (پراکسیداسیون) غذایی، برابر با افزایش میزان و تثبیت DNA به دلیل افزایش حساسیت به ترکیبات آنتی-اکسیدانی است. انسانی انگیزه‌ای اصلاحی در فیکس سلولی به دلیل افزایش DNA را می‌کند. DNA با وجود اینکه مکانیسم‌های درگیری در پاتولوژی‌هایی مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر همو جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر HMO جای بسته دارد، به نظر می‌رسد رادیولوگی آزاد نقش اساسی در پاتوتزیمی‌ها چنین مرتبط با استخوان‌های موثر HMO جای بسته D
نتایج‌گیری:

به نظر می‌رسد قرآن‌گرگان در معرض دود سیگار در نوجوانان موجب کاهش ظرفیت آنتی‌اکسیدان نام پراکنده شده و می‌تواند از این طریق سلامت حفره دهان را به خطر بیندازد.

References:

11- Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measurement of FRAP ‘‘antioxidant power’’: the frap assay. Anal Biochem 1996;239(1):70-76.